Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Atheroscler Thromb ; 22(2): 201-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25284441

RESUMO

AIM: Computer simulation is a new method for understanding biological phenomena. In this report, we developed a simple platelet simulator representing platelet adhesion under blood flow conditions. METHODS: We generated virtual platelets based on the functions of three key adhesive proteins: glycoprotein (GP) Ibα, GPIIb/IIIa and collagen receptors. The adhesive force between GPIbα and von Willebrand factor (VWF) was set to increase in association with increments in the fluid shear stress. GPIIb/IIIa acquires an adhesive force to bind with ligands only when platelets are activated following multiple GPIbα stimulation by VWF or collagen receptors. RESULTS: Upon perfusion over the area of virtual endothelial injury, the virtual platelets adhered and became activated to form platelet thrombi. A total of 286/mm(2) of activated platelets was found to have accumulated downstream of the flow obstacle within 30 seconds, with 59/mm(2) platelets adhering upstream. The results obtained with the virtual model were consistent with those for real platelets in human blood in the presence of similarly shaped flow obstacles. CONCLUSIONS: Our computer platelet simulator, which employs the functions of three key platelet membrane proteins, shows similar findings for adhesion in the presence and absence of blood flow obstacles.


Assuntos
Plaquetas/fisiologia , Proteínas Sanguíneas/metabolismo , Simulação por Computador , Modelos Estatísticos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Fator de von Willebrand/metabolismo , Humanos , Adesividade Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...